An Extension of the Exponential Formula in Enumerative Combinatorics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension of the exponential formula in enumerative combinatorics

Let α be a formal variable and Fw be a weighted species of structures (class of structures closed under weight-preserving isomorphisms) of the form Fw = E(F c w), where E and F c w respectively denote the species of sets and of connected Fw-structures. Multiplying by α the weight of each F c wstructure yields the species Fw(α) = E(F c αw). We introduce a “universal” virtual weighted species, Λ,...

متن کامل

NSF Proposal: Automated Enumerative Combinatorics Automated Enumerative Combinatorics

My research students and I continued to practice a new research methodology, that can be loosely called rigorous experimental mathematics. It has something in common with both “mainstream” experimental mathematics (as preached by the Borwein brothers, David Bailey, Victor Moll, and their collaborators, see e.g. the masterpiece [BB], and the recent collection [BBCGLM]), and automated theorem pro...

متن کامل

Enumerative Combinatorics 8: Species

In this lecture I will discuss a very nice unifying principle for a number of topics in enumerative combinatorics, the theory of species, introduced by André Joyal in 1981. Species have been used in areas ranging from infinite permutation groups to statistical mechanics, and I can’t do more here than barely scratch the surface. Joyal gave a category-theoretic definition of species; I will take ...

متن کامل

Complexity problems in enumerative combinatorics

We give a broad survey of recent results in Enumerative Combinatorics and their complexity aspects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 1995

ISSN: 1077-8926

DOI: 10.37236/1270